
Une étude démontre qu’une intelligence artificielle peut extraire d’images de scanner des informations cliniques et biologiques qui permettent d’établir la sévérité de la maladie et le pronostic de patients atteints de la Covid-19. Des médecins et chercheurs de Gustave Roussy, de l'Assistance Publique-Hôpitaux de Paris, de CentraleSupélec, de l’Université de Paris, de l’Université Paris-Saclay, de l’Inserm, de l’Inria et de TheraPanacea ont établi une signature numérique de biomarqueurs prédictifs de l’évolution de la Covid-19. En identifiant les patients qui risquent de développer des formes graves et de nécessiter l’assistance d’une ventilation, cette IA pourrait aider les hôpitaux à prioriser la prise en charge des malades en fonction de leur urgence vitale. Ces résultats ont été publiés dans la revue Medical Image Analysis.
Le scanner thoracique est largement utilisé pour la prise en charge des pneumonies liées au coronavirus. Outre le fait qu’il peut aider à poser un diagnostic de la maladie, il joue un rôle pronostique en évaluant visuellement l'étendue des lésions pulmonaires. Dans cette étude rétrospective, les médecins et chercheurs ont mis au point une solution d’intelligence artificielle de bout en bout qui permet aussi précisément qu’un radiologue expérimenté de quantifier la Covid-19, d’évaluer la sévérité de la maladie et son pronostic à court terme.
L’IA a été entrainée et validée sur les images de scanner de 478 patients de cinq cohortes indépendantes qui avaient précédemment reçu un diagnostic de Covid-19 par test RT-PCR. Le groupe de patients étudiés présentait 110 cas graves dont 6 % sont décédés de la Covid-19 et 17 % intubés.
Grâce à une approche fondée sur le deep learning et exploitant des réseaux neuronaux convolutifs 2D et 3D, les chercheurs ont appris à l’IA à reconnaitre automatiquement les zones où la maladie était caractéristique (structure en verre dépoli) sur les images de scanner.